Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1267697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818381

RESUMO

T Regulatory type-1 (TR1) cells represent an immunosuppressive T cell subset, discovered over 25 years ago, that produces high levels of interleukin-10 (IL-10) but, unlike its FoxP3+ T regulatory (Treg) cell counterpart, does not express FoxP3 or CD25. Experimental evidence generated over the last few years has exposed a promising role for TR1 cells as targets of therapeutic intervention in immune-mediated diseases. The discovery of cell surface markers capable of distinguishing these cells from related T cell types and the application of next generation sequencing techniques to defining their transcriptional make-up have enabled a more accurate description of this T cell population. However, the developmental biology of TR1 cells has long remained elusive, in particular the identity of the cell type(s) giving rise to bona fide TR1 cells in vivo. Here, we review the fundamental phenotypic, transcriptional and functional properties of this T cell subset, and summarize recent lines of evidence shedding light into its ontogeny.


Assuntos
Autoantígenos , Subpopulações de Linfócitos T , Autoantígenos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Forkhead/metabolismo
2.
Mol Neurobiol ; 56(2): 1196-1210, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876881

RESUMO

Despite ancient knowledge on cocaine appetite-suppressant action, the molecular basis of such fact remains unknown. Addiction/eating disorders (e.g., binge eating, anorexia, bulimia) share a central control involving reward circuits. However, we here show that the sigma-1 receptor (σ1R) mediates cocaine anorectic effects by interacting in neurons with growth/hormone/secretagogue (ghrelin) receptors. Cocaine increases colocalization of σ1R and GHS-R1a at the cell surface. Moreover, in transfected HEK-293T and neuroblastoma SH-SY5Y cells, and in primary neuronal cultures, pretreatment with cocaine or a σ1R agonist inhibited ghrelin-mediated signaling, in a similar manner as the GHS-R1a antagonist YIL-781. Results were similar in G protein-dependent (cAMP accumulation and calcium release) and in partly dependent or independent (ERK1/2 phosphorylation and label-free) assays. We provide solid evidence for direct interaction between receptors and the functional consequences, as well as a reliable structural model of the macromolecular σ1R-GHS-R1a complex, which arises as a key piece in the puzzle of the events linking cocaine consumption and appetitive/consummatory behaviors.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Grelina/metabolismo , Neurônios/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Receptores sigma/metabolismo , Saponinas/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Neurônios/citologia , Neurônios/metabolismo , Ácido Oleanólico/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor Sigma-1
3.
Front Cell Dev Biol ; 6: 67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073165

RESUMO

Endocannabinoids are important players in neural development and function. They act via receptors, whose activation inhibits cAMP production. The aim of the paper was to look for calcium- and cAMP-signaling cross-talk mediated by cannabinoid CB1 receptors (CB1R) and to assess the relevance of EF-hand CaM-like calcium sensors in this regard. Using a heterologous expression system, we demonstrated that CB1R interacts with calneuron-1 and NCS1 but not with caldendrin. Furthermore, interaction motives were identified in both calcium binding proteins and the receptor, and we showed that the first two sensors competed for binding to the receptor in a Ca2+-dependent manner. Assays in neuronal primary cultures showed that, CB1R-NCS1 complexes predominate at basal Ca2+ levels, whereas in the presence of ionomycin, a calcium ionophore, CB1R-calneuron-1 complexes were more abundant. Signaling assays following forskolin-induced intracellular cAMP levels showed in mouse striatal neurons that binding of CB1R to NCS1 is required for CB1R-mediated signaling, while the binding of CB1R to calneuron-1 completely blocked Gi-mediated signaling in response to a selective receptor agonist, arachidonyl-2-chloroethylamide. Calcium levels and interaction with calcium sensors may even lead to apparent Gs coupling after CB1R agonist challenge.

4.
Brain Behav Immun ; 67: 139-151, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843453

RESUMO

Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB1 and CB2 receptors, which may form heteromeric complexes (CB1-CB2Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB1 and circa 20 fold for CB2), whereas receptor levels were similar for CB1 and markedly upregulated for CB2; CB1-CB2Hets were also upregulated. Unlike in resting cells, CB2 receptors became robustly coupled to Gi in activated cells, in which CB1-CB2Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß1-42). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant ß-amyloid precursor protein (APPSw,Ind) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APPSw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB1-CB2Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB1-CB2Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB1-CB2 heteroreceptor complex in activated microglia have potential as targets in the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Endocanabinoides/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Levodopa/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos Wistar , Transdução de Sinais
5.
Front Pharmacol ; 8: 744, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109685

RESUMO

The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R. Using membrane preparations from CB2R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB2R where the synthetic cannabinoid, [3H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB2R-selective compound, CM-157. The effect on binding to CB2R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the KD . CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB2R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

6.
J Biol Chem ; 291(25): 13048-62, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129257

RESUMO

The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling.


Assuntos
Neurônios/metabolismo , Receptores de Grelina/fisiologia , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , Membrana Celular/metabolismo , Grelina/fisiologia , Células HEK293 , Hipocampo/citologia , Humanos , Multimerização Proteica , Subunidades Proteicas/fisiologia , Transporte Proteico , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo
7.
PLoS Genet ; 11(8): e1005473, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291458

RESUMO

The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.


Assuntos
Proteínas de Drosophila/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila melanogaster , Glicosilação , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Receptor Smoothened , Especificidade da Espécie
8.
CNS Neurosci Ther ; 20(8): 703-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24809909

RESUMO

The overall architecture of the nervous system, especially the CNS, is remarkable. The anatomy of the nervous system is constituted not only by macroscopic and microscopy identifiable regions and neuronal cell types, but also by protein complexes whose identification and localization require sophisticated techniques. G-protein-coupled receptors (GPCRs) constitute an example of proteins that are the key factors in the framework needed to sustain brain and nerve structure and function. The versatility underlying nervous system anatomy takes advantage of a recently discovered feature of GPCRs, the possibility to form heteromers that, placed at specific neuronal subsets and at specific locations (pre-, post-, or peri-synaptic), contribute to attain unique neural functions.


Assuntos
Sistema Nervoso Central/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sistema Nervoso Central/citologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...